Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề chọn HSG Toán 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương.
Trích dẫn đề chọn HSG Toán 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương:
+ Điền vào mỗi ô của bảng vuông 7 x 7 các số tự nhiên từ 1 đến 49 như hình vẽ. Mỗi lần, được phép chọn 1 ô của bảng và đồng thời tăng số trong ô đó thêm 1 rồi giảm mỗi số trong hai ô nào đó kề với nó đi 1, hoặc giảm số trong ô đó đi 1 và tăng mỗi số trong hai ô kề với nó thêm 1. Hỏi có thể đưa tất cả các số trong bảng về bằng nhau sau một số hữu hạn bước được hay không?
+ Cho tam giác ABC nội tiếp đường tròn (O). Một đường tròn (K) qua B và C cắt các đoạn thẳng CA và AB lần lượt tại E và F. Gọi BE cắt CF tại H. M là trung điểm BC và tiếp tuyến tại B và C của đường tròn ngoại tiếp tam giác BHC cắt nhau tại I. Gọi S là hình chiếu của A trên IH và D là giao của IH với BC. Chứng minh rằng đường tròn ngoại tiếp tam giác SMD tiếp xúc với đường tròn (O).
+ Cho dãy số (an) thỏa mãn đồng thời hai điều kiện 3a_n+1≥ a_n và 6a_n+1 + a_n-1 ≤ 5a_n với mọi n ≥ 2 và n thuộc N. Chứng minh rằng dãy (an) có giới hạn hữu hạn và tìm giới hạn đó.
👉 Trên đây tôi đã chia sẻ đến các bạn Chuyên đề trắc nghiệm bất phương trình mũ. Chúc các bạn ôn tập đạt được điểm cao.