DECUONG.VN Chia Sẻ Cương Ôn Luyện Thi Các Lớp

Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Cao Bằng.

 

Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Cao Bằng:

+ Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nhọn, có H(3;-4/3), I(6;-7/3) lần lượt là trực tâm, tâm đường tròn ngoại tiếp tam giác ABC. Gọi E, F lần lượt là hình chiếu vuông góc của B, C trên các cạnh AC, AB. Đường trung trực của đoạn EF có phương trình x – 3y – 10 = 0. Tìm tọa độ các đỉnh của tam giác ABC, biết B có tung độ dương và phương trình đường thẳng BE: x – 3 = 0.

+ Cho đa giác đều (H) có 20 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của (H). Tính xác suất để chọn được một tam giác từ tập X là tam giác vuông nhưng không vuông cân.

+ Tìm các giá trị của tham số m để đồ thị (Cm): y = x^4 – 2(m + 2)x^2 + 2m + 3 cắt trục hoành tại bốn điểm phân biệt có hoành độ tương ứng lập thành một cấp số cộng.

👉 Trên đây tôi đã chia sẻ đến các bạn Đề HSG Toán 12 năm 2019 – 2020 sở GD&ĐT Cao Bằng. Chúc các bạn ôn tập đạt được điểm cao.

Baitap24h.com

@if (!string.IsNullOrEmpty(Model.UrlShopee)) {
}