DECUONG.VN Chia Sẻ Cương Ôn Luyện Thi Các Lớp

Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp.

Trích dẫn đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp:

+ Xét số T = 3^n – 2^n, trong đó n là số nguyên dương, n >= 2. Chứng minh rằng:

a) Không tồn tại n để T là bình phương của một số nguyên tố.

b) Nếu T là lập phương của một số nguyên tố thì n là một số nguyên tố.

+ Với mỗi m thuộc N* ta kí hiệu: a(2m) = (m!)^2, a(2m + 1) = (m!).((m + 1)!). Cho đa thức p(x) hệ số nguyên, có bậc lớn hơn hoặc bằng k (k thuộc N*) và có ít nhất k nghiệm nguyên phân biệt. Xét số nguyên n (n khác 0) sao cho đa thức q(x) = p(x) – n có ít nhất một nghiệm nguyên. Chứng minh rằng |n| >= a(k).

+ Cho tam giác ABC, đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB tại D, E, F.

1. Gọi S là giao điểm của EF với BC. Chứng minh SI vuông góc với AD.

2. Đường thẳng d thay đổi, đi qua S và cắt đường tròn (I) tại hai điểm phân biệt M, N. Các tiếp tuyến tại M, N của (I) cắt nhau tại T. Chứng minh T thuộc một đường thẳng cố định.

3. Gọi K là giao điểm của ME và NF, G là giao điểm của MC và NB. Chứng minh K và G cùng thuộc đường thẳng AD.

👉 Trên đây tôi đã chia sẻ đến các bạn Chuyên đề trắc nghiệm bất phương trình mũ. Chúc các bạn ôn tập đạt được điểm cao.

 

Baitap24h.com

Shopacgame.vn

 

@if (!string.IsNullOrEmpty(Model.UrlShopee)) {
}