Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề chọn đội tuyển HSG Toán 12 năm học 2020 – 2021 sở GD&ĐT Quảng Bình.
Trích dẫn đề chọn đội tuyển HSG Toán 12 năm học 2020 – 2021 sở GD&ĐT Quảng Bình:
+ Trên các cạnh AB, AC của tam giác ABC lần lượt lấy hai điểm A, B. Hai đoạn thẳng BB1 và CC1 cắt nhau tại X và hai đoạn thẳng B1C1 và AX cắt nhau tại P. Đường tròn ngoại tiếp các tam giác BXC1, CXB1 cắt nhau tại điểm thứ hai Y và cắt cạnh BC lần lượt tại D và E.
a) Giả sử B1C1 // BC và gọi H, K lần lượt là hình chiếu vuông góc của Y lên AB và AC. Chứng minh rằng: YH/AB = YK/AC.
b) Giả sử B1E và C1D cắt nhau tại Q và đường thẳng B1D cắt đường thẳng C1E tại R. Chứng minh ba điểm P, Q và R thẳng hàng.
+ Cho tập hợp X có 2020 phần tử. Bạn An chia tập X thành 2 tập hợp A và B thỏa mãn |A| = |B|; A ∩ B = Ø, bằng k cách khác nhau. Tìm giá trị nhỏ nhất của k sao cho với 2 phần tử bất kỳ của X, luôn có ít nhất 1 cách trong k cách chia mà bạn An chia chúng vào 2 tập hợp khác nhau.
+ Gọi n là số nguyên dương thỏa mãn điều kiện 2n – 5 | 3(n! + 1).
a) Giả sử tồn tại n > 4 thỏa mãn điều kiện trên. Chứng minh rằng 2n – 5 là số nguyên tố.
b) Tìm tất cả các số nguyên dương n thỏa mãn điều kiện trên.
👉 Trên đây tôi đã chia sẻ đến các bạn Chuyên đề trắc nghiệm bất phương trình mũ. Chúc các bạn ôn tập đạt được điểm cao.