Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh.
Trích dẫn đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh:
+ Cho tập hợp X = {x | x thuộc Z; -5 ≤ x ≤ 5; x khác 0}. Chọn ngẫu nhiên 4 số đôi một phân biệt a, b, c, d thuộc X. Tính xác suất để hàm số y = (ax + b)/(cx + d) (với ad khác bc) có đồ thị (C) mà cả (C) lẫn tiệm cận đứng của (C) đều cắt trục Ox theo chiều dương.
+ Cho hàm số f(x) = 1/2.x^2 – mx, tham số m khác 1, có đồ thị (C1), (C2). Biết rằng tồn tại đúng hai số x0 thuộc (2;3) sao cho nếu gọi d1, d2 là tiếp tuyến tại các điểm có hoành độ x0 thuộc (C1), (C2) và d1, d2 cắt nhau ở A, còn d1, d2 cắt trục Ox ở B, C thì AB = AC. Tìm tất cả các giá trị m.
+ Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi d là đường thẳng di động đi qua điểm I(1;1) và cắt (C) tại hai điểm M, N. Tính khoảng cách từ điểm A(2;-3) đến d khi tam giác AMN có diện tích nhỏ nhất.
👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT TP. HCM. Chúc các bạn ôn tập đạt được điểm cao.