Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội.
Trích dẫn đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội:
+ Trong mặt phẳng Oxy, cho tam giác ABC có M(2;1) là trung điểm cạnh AC, điểm H(0;-3) là chân đường cao kẻ từ A, điểm E(23;-2) thuộc đường thẳng chứa đường trung tuyến kẻ từ C. Tìm tọa độ điểm B biết rằng điểm A thuộc đường thẳng d: 2x + 3y – 5 = 0 và điểm C có hoành độ dương.
+ Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi a là số đo của góc BAC và b là số đo của góc giữa đường thẳng OA và mặt phẳng (ABC). Gọi R và S lần lượt là bán kính đường tròn ngoại tiếp và diện tích tam giác ABC. Chứng minh rằng: (cos a)^2/sin 2b = R^2/S.
+ Xét a, b, c là các số thực dương, thoả mãn các điều kiện abc = 1 và a^2 + b^2 + 1/a^2b^2 = 1 + 2/ab. Tìm giá trị nhỏ nhất của biểu thức P = 1/(1 + 3c) – 1/(a^2 + 1) – 1/(1 + b^2).
👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm 2020 – 2021 trường Chu Văn An. Chúc các bạn ôn tập đạt được điểm cao.