DECUONG.VN Chia Sẻ Cương Ôn Luyện Thi Các Lớp

Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk.

Trích dẫn đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk (ngày 2):

+ Tìm số nguyên dương n nhỏ nhất sao cho tồn tại các số nguyên a1, a2 … an để đa thức fn(x) = x^2n+2 – 2(a1 + a2 + … + an)^2.x^n+1 + (a1^4 + a2^4 + … + an^4 + 1) có ít nhất một nghiệm nguyên.

+ Cho a, b là hai số nguyên dương sao cho (a + b^3)/(a^2 + 3ab + 3b^2 – 1) là một số nguyên. Chứng minh rằng a^2 + 3ab + 3b^2 – 1 chia hết cho lập phương của một số nguyên lớn hơn 1.

+ Cho tam giác ABC, đường tròn (O) cắt cạnh BC tại hai điểm D, E (D nằm giữa B và E), cắt cạnh CA tại hai điểm F, G (F nằm giữa C và G) và cắt cạnh AB tại hai điểm H, I (H nằm giữa A và I). Gọi M là giao điểm của DF và EI, N là giao điểm của EG và FH, P là giao điểm của GI và HD. Chứng minh rằng các đường thẳng AM, BN và CP đồng quy tại một điểm.

👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm 2020 – 2021 sở GD&ĐT Đắk Lắk. Chúc các bạn ôn tập đạt được điểm cao.

Baitap24h.com

@if (!string.IsNullOrEmpty(Model.UrlShopee)) {
}