Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Cà Mau.
Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau:
+ Trong mặt phẳng Oxy cho tam giác ABC có đỉnh A(1;2), đường trung tuyến và đường phân giác trong hạ từ đỉnh B lần lượt có phương trình d: 2x – 3y = 2, d1: 9x – 3y = 16. Tìm tọa độ đỉnh C của tam giác ABC.
+ Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a. Biết SA = SB = SC = a. Đặt SD = x (0 < x < a√3).
a) Tính số đo góc giữa đường thẳng SB và mặt phẳng (ABCD) khi x = a.
b) Tính x theo a sao cho tích AC.SD lớn nhất.
+ Cho đa giác đều có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của (H). Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật nhưng không phải là hình vuông.
👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT TP. HCM. Chúc các bạn ôn tập đạt được điểm cao.