Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi học sinh giỏi Quốc gia môn Toán THPT năm học 2020 – 2021.
Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh:
+ Cho phương trình x^n = x + 1. Chứng minh rằng với mỗi n thuộc N và n >= 2, phương trình có nghiệm dương duy nhất, ký hiệu là xn.
a. Tính giới hạn của dãy số (un) với un = n(xn – 1).
b. Tìm số thực k sao cho dãy số vn = n^k(xn+1 – xn) có giới hạn hữu hạn khác 0.
+ Cho tam giác nhọn ABC có AB < AC < BC và nội tiếp đường tròn (O;R). Đường thẳng d thay đổi nhưng luôn vuông góc với đoạn thẳng OA và cắt cạnh AB, AC lần lượt tại M, N. Gọi K là giao điểm của đường thẳng BN và CM, P là giao điểm của đường thẳng AK và BC, I là trung điểm của BC.
a. Chứng minh tứ giác MNIP nội tiếp được trong một đường tròn.
b. Gọi H là trực tâm tam giác AMN. Chứng minh rằng đường thẳng HK luôn đi qua một điểm cố định khi đường thẳng d thay đổi.
+ Cho bảng vuông n x n ô vuông (n > 2) với các ô vuông được tô bằng hai màu đen hoặc trắng (mỗi ô chỉ tô bởi một màu). Biết rằng mỗi bước, ta chỉ thay đổi màu của toàn bộ các ô trong một hàng hoặc một cột (ô trắng thành đen và ô đen thành trắng).
a. Giả sử trong bảng có đúng một ô được tô đen. Hỏi sau một số bước đổi màu các hàng hoặc cột nào đó thì bảng toàn ô trắng được hay không?
b. Có tất cả bao nhiêu cấu hình ban đầu sao cho sau hữu hạn bước đổi màu hàng hoặc cột thì bảng gồm toàn ô trắng? (Ví dụ: Cấu hình H1 là một cấu hình thỏa mãn với n = 3).
👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh. Chúc các bạn ôn tập đạt được điểm cao.