DECUONG.VN Chia Sẻ Cương Ôn Luyện Thi Các Lớp

Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên.

Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên:

+ Cho tam giác nhọn ABC có đường cao AM, trực tâm H. Đường thẳng BH cắt đường tròn đường kính AC tại D, E (BD < BE). Đường thẳng CH cắt đường tròn đường kính AB tại F, G (CF < CG). Đường tròn ngoại tiếp tam giác DMF cắt BC tại điểm thứ hai là N.

a) Chứng minh rằng các điểm G, M, N, E cùng thuộc một đường tròn.

b) Chứng minh rằng các đường thẳng BF, CD, HN đồng quy.

+ Cho P(x), Q(x) là các đa thức có hệ số cao nhất bằng 1 và các hệ số đều là số thực và deg P(x) = deg Q(x) = 2020. Chứng minh rằng nếu phương trình P(x) = Q(x) không có nghiệm thực thì phương trình P(x + 2021) = Q(x – 2021) có nghiệm thực.

+ Cho p là số nguyên tố khác 2; a và b là hai số tự nhiên lẻ sao cho (a + b) chia hết cho p, (a − b) chia hết cho (p – 1). Chứng minh rằng (a^b + b^a) chia hết 2p.

👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm 2020 – 2021 sở GD&ĐT Phú Yên. Chúc các bạn ôn tập đạt được điểm cao.

 

Baitap24h.com

Shopacgame.vn

 

@if (!string.IsNullOrEmpty(Model.UrlShopee)) {
}