Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định.
Trích dẫn đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định:
+ Cho tam giác nhọn ABC không cân và nội tiếp đường tròn (O). Trong tam giác ABC lấy điểm P sao cho AP vuông góc với BC. Kẻ PE, PF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm thứ hai là G (khác điểm A). Chứng minh rằng ba đường thẳng GP, BF, CE đồng quy tại một điểm.
+ Cho đường tròn tâm O và tam giác nhọn ABC nội tiếp đường tròn (O) có trực tâm H, trong đó AB < BC. Trên tia BO kéo dài lấy điểm D sao cho ADC = ABC. Một đường thẳng đi qua điểm H song song với đường thẳng BC cắt cung nhỏ AC tại điểm E. Chứng minh rằng BH = DE.
+ Cho n là số nguyên dương không nhỏ hơn 3 và các điểm A1, A2 … An cùng nằm trên một đường tròn. Có tối đa bao nhiêu tam giác nhọn có đỉnh là ba điểm trong số các điểm trên.
👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT TP. HCM. Chúc các bạn ôn tập đạt được điểm cao.