Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Tiền Giang.
Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Tiền Giang:
+ Cho a, b, c là các số nguyên với a khác 0 thỏa mãn an2 + bn + c là số chính phương với mọi số nguyên dương n. Chứng minh rằng tồn tại các số nguyên x, y sao cho a = x2; b = 2xy; c = y2.
+ Có 3 lớp học, mỗi lớp có n học sinh. Chiều cao của 3n bạn ở 3 lớp đôi một khác nhau. Chia 3n bạn thành n nhóm, mỗi nhóm gồm 3 học sinh đến từ cả 3 lớp. Bạn cao nhất ở mỗi nhóm được nhận danh hiệu “người mẫu”. Biết rằng với mọi cách chia nhóm, mỗi lớp luôn có ít nhất 10 “người mẫu”. Chứng minh rằng giá trị nhỏ nhất của n là 40.
+ Cho hai đường tròn (w1), (w2) có cùng bán kính cắt nhau tại hai điểm phân biệt X1, X2. Đường tròn (w) tiếp xúc ngoài với (w1) tại T1 và tiếp xúc trong với (w2) tại T2. Chứng minh rằng X1T1 cắt X2T2 tại một điểm trên (w).
👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT TP. HCM. Chúc các bạn ôn tập đạt được điểm cao.