Dưới đây tôi giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD&ĐT Lâm Đồng.
Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD&ĐT Lâm Đồng:
+ Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Gọi H là hình chiếu của A lên BC và D, E, M lần lượt là trung điểm HB, HC, BC. Đường tròn (ABE) tâm I cắt AC tại S và đường tròn (ACD) tâm J cắt AB tại R.
a) Chứng minh rằng BC = 4IJ.
b) Trung tuyến đỉnh H của tam giác AHM cắt RS tại T, chứng minh rằng các đường thẳng AT, BS, CR đồng quy.
+ Cho số a = 2019.2020.2021 và số nguyên dương n >= 3. Người ta xếp n số nguyên dương nào đó lên một đường tròn thỏa mãn đồng thời hai điều kiện sau:
(i) Hai số nằm cạnh nhau có tích không chia hết cho a.
(ii) Hai số không nằm cạnh nhau có tích chia hết cho a.
a) Tìm một bộ các số nguyên dương thỏa mãn cách xếp trên.
b) Tìm giá trị lớn nhất của n.
+ Cho tập S = {1; 2; …; n} với n là số nguyên dương. Gọi An là tập hợp các hoán vị (a1; a2; …; an) của tập S thỏa mãn điều kiện 2(a1 + a2 + … + ak) chia hết cho k với mọi k = 1; 2; …; n.
a) Chứng minh rằng an – 1 chia hết cho n – 1 khi n chẵn và n > 3.
b) Tìm số phần tử của A2020.
👉 Trên đây tôi đã chia sẻ đến các bạn Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT TP. HCM. Chúc các bạn ôn tập đạt được điểm cao.